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ABSTRACT: The synthesis and characterization of a
macrobicyclic in,in-bis(hydrosilane) is described. A combi-
nation of crystallographic and computational data indicate
that the central hydrogen−hydrogen nonbonded contact
distance is the shortest for any crystallographically
characterized compound.

We recently reported the synthesis of the macrobicyclic
in,in-bisphosphine 1 (Scheme 1), a molecule in which

the two bridgehead phosphines are in van der Waals contact,
show strong spin−spin coupling, and resist reaction with
reagents larger than protons (and even protonation is slow).1

The corresponding in,in-bis(hydrosilane) 2, with its clashing
internal hydrogen atoms, would be an even more unusual
structure if it could be prepared. The in,in geometry of 1 is
strongly favored over a possible in,out isomer2 [by 18 kcal/mol
at the B3PW91/6-31G(d) level3], but for compound 2, the
preference is much reduced (to 6 kcal/mol). However, our
prior work with triarylelement-containing in-cyclophanes,4

including silane 3,5 left us with reasonable precursors of
compound 2 and every reason to attempt the synthesis.
Condensation of tris(2-mercaptophenyl)silane5 (4) and

tris[2-(chloromethyl)phenyl]silane (5) at high dilution in
benzene/ethanol in the presence of KOH gave compound 2
in 0.4% yield after extensive purification (Scheme 1). Although
formed in exceptionally low yield, the desired 2 was easily
located in the reaction mixture (composed mostly of oligomeric
and polymeric byproducts) because of the similarity of its

chromatographic mobility to that of diphosphine 1. Two
spectroscopic signatures suggested that compound 2 possesses
the desired in,in configuration. First, the two Si−H resonances
in the 1H NMR spectrum of 2 were shifted ∼2 ppm downfield
(to δ 8.24 and δ 8.57) from the silane proton resonance in the
nonmacrocyclic model compound 6 (δ 6.21),5 an example of
steric deshielding of proton resonances.6 Second, the Si−H
stretch7 observed in the IR spectrum of 2 appeared at 2325
cm−1, roughly 150 cm−1 higher in frequency than the Si−H
stretch in model 6 (2177 cm−1).5 This is a clear case of
compressional frequency enhancement, although less than the
200−400 cm−1 shifts observed for C−H and Si−H stretches in
a number of congested in-cyclophanes.5,8,9

Compound 2 crystallized in space group P3 ̅, with the
molecule lying on a special position possessing crystallographic
C3 symmetry, a fortunate occurrence that facilitated comparison
with the calculated structures of 2, which are also C3-
symmetric.10,11 The molecular structure of 2 is illustrated in
Figure 1. The in,in geometry is confirmed, as is the unique
“head-on collision” of the two in-hydrogen atoms.
Table 1 summarizes the salient interatomic distances for

atoms on the central axis of 2. Most significantly, the two Si
atoms, whose positions were well-determined, are only 4.43 Å
apart,12 a distance (dSi−Si) that must accommodate two Si−H
bonds as well as the H−H nonbonded contact (dH−H). The H
atom positions were refined, but foreshortening of the Si−H
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Scheme 1

Figure 1. Molecular structure of compound 2; 50% thermal ellipsoids
have been employed.
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distances13 made the observed dH−H far too long. If a standard
Si−H bond distance of 1.48 Å14 were employed, then dH−H
would be only 1.47 Å, but there must be some compression of
the Si−H bond in this environment. The computational
methods listed in Table 1 gave Si−H bond distances ranging
from 1.44 to 1.46 Å and dH−H values ranging from 1.56 to 1.62
Å. However, all of these methods significantly overestimated
dSi−Si,

15 so the actual dH−H (or, alternatively, the Si−H bond
distances) must be shorter still.
The “world record” for the shortest experimentally

determined H−H nonbonded contact is 1.617(3) Å via
neutron diffraction for a cage pentacyclodecane.16,17 This
distance is in almost perfect agreement with the results of
modern calculations [e.g., B3PW91/6-31G(d), 1.616 Å; MP2/
6-31G(d), 1.622 Å]. There can be little doubt that dH−H in 2 is
significantly shorter, on the order of 1.56 Å, but direct
experimental confirmation awaits a large enough crystal for a
neutron diffraction experiment.

■ ASSOCIATED CONTENT
*S Supporting Information
Experimental procedures and spectra for 2, atomic coordinates
of the calculated structures of 2; and a CIF for the structure
determination of 2. This material is available free of charge via
the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
rpascal@tulane.edu
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by National Science Foundation
Grants CHE-0944155, CHE-1265507, and MRI-1228232 (the
last for the purchase of a diffractometer), which are gratefully
acknowledged.

■ REFERENCES
(1) Zong, J.; Mague, J. T.; Kraml, C. M.; Pascal, R. A., Jr. Org. Lett.
2013, 15, 2179−2181.
(2) For a review of in/out stereoisomerism, see: Alder, R. W.; East, S.
P. Chem. Rev. 1996, 96, 2097−2111.
(3) All calculations were performed using Gaussian 09: Frisch, M. J.;
Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson,
G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov,
A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda,
Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J.
E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;

Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.;
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